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Empirical Asset Pricing

E(Rt|xt−1) = f(xt−1)

• What should be included in xt−1, given f?

• We also want to ask, what is f?

• What if f changes over time?
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Example Data
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Linear Regression
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Linear Regression, e.g. Fama and French (1992)
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Linear Regression

Freyberger, Neuhierl, and Weber (2017): “no a priori reason exists
why the conditional mean function should be linear.”
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Background Methodology Current Results Conclusion

Nonlinear Option: Portfolio Sorts
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Portfolio Sorts, e.g. Jegadeesh and Titman (2001)
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Portfolio Sorts
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Portfolio Sorts

Fama and French (2008): “sorts are clumsy for examining the
functional form of the relation between average returns and an
anomaly variable.”

• Function is assumed constant within deciles

• No information shared across deciles

• (There are ways to fit nonlinear functions that are smooth)

Fisher, Puelz, Carvalho Monotonic Effects
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Splines
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Splines
For a standard spline with m knots, x̃1, ..., x̃m, x ∈ [0, 1],

f(x) = α+ β1x+ β2x
2 + β3(x− x̃1)2+ + ...+ βm+2(x− x̃m)2+

Fits a smooth curve with a different quadratic coefficient after
each knot. For example, knots at 0.25, 0.5, 0.75,
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Splines - Freyberger, Neuhierl, and Weber (2017)

• Characteristics/covariates are rank-transformed to empirical
percentiles, in (0,1)

• Additive model of quadratic splines, but include separate
intercepts for each covariate

• Fit with Adaptive Group LASSO, which shrinks and selects all
of a characteristic’s spline coefficients as a group

Fisher, Puelz, Carvalho Monotonic Effects
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Monotonic Quadratic Spline
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Our Contribution

If we are serious about understanding the functional form of these
marginal relationships, then we should have

1 Additive splines: flexible and can separate to marginal effects

2 Monotonicity: complement the flexibility of the splines with a
priori known structure

3 A single intercept: identifiable and intuitive

4 Time-dynamics modeled, not just a rolling window

5 Separation between the shrinkage of coefficients and selection
of characteristics

Fisher, Puelz, Carvalho Monotonic Effects
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1 - Additive Model

E(rit|xi,t−1) = αt +

K∑
k=1

fkt(xk,i,t−1)

• xk,i,t−1 ∈ (0, 1) is the empirical percentile of characteristic k
for firm i at time t− 1, ranked over all firms

• Note that there are no interactions built into the model, as
the intention is to see the marginal effect

Fisher, Puelz, Carvalho Monotonic Effects
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2 - Monotonicity: Shively, Sager and Walker (2009)
A standard spline with m knots, x̃1, ..., x̃m,

f(x) = β1x+ β2x
2 + β3(x− x̃1)2+ + ...+ βm+2(x− x̃m)2+

is forced to be (WLOG) nondecreasing if all first derivatives are
nonnegative. These simple derivatives, with known knots, yield
m+ 2 linear constraints needed for monotonicity, such that

Lβ ≥ 0.

So, we set γ = Lβ and we use a modified version of their
shrinkage prior:

(γj |Ij = 0) ∼ δ0
(γj |Ij = 1) ∼ N+(0, cσ2)

Ij ∼ Bernoulli(0.2)

Fisher, Puelz, Carvalho Monotonic Effects
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3 - Intercept adjustment

Recall our additive model, with spline basis Xi,k,t−1 and a single
intercept

E(rit|xi,t−1) = αt +

K∑
k=1

Xi,k,t−1βkt

⇒ αt is the expected return for a firm with the minimum value for
all characteristics, i.e. Xi,k,t−1 = 0, ∀k.
Problems:

1 Computationally challenging due to few and volatile data
points

2 Intuitively unfavorable as a baseline

3 Cannot see the lower tail effects change over time

Fisher, Puelz, Carvalho Monotonic Effects
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3 - Intercept adjustment

Proposal: let the intercept be the expected return for a firm that
has the median value for all characteristics

• Requires transforming the splines such that they equal 0 at
the median x = 0.5 and not x = 0

• This then requires carefully expand spline basis and the
monotonicity constraint matrix L

Fisher, Puelz, Carvalho Monotonic Effects



Background Methodology Current Results Conclusion

4 - Modeling Time-dynamics: McCarthy and Jensen (2016)

• Power-weighted likelihoods let information decay over time

• To estimate parameters at time τ , let δt = 0.99τ−t, such that
δ1 ≤ δ2 ≤ ... ≤ δτ = 1, the likelihood at time τ ∈ {1, ..., T} is

p(r1, ..., rτ |Θτ ) =

τ∏
t=1

p(rt|Θτ )δt .

Fisher, Puelz, Carvalho Monotonic Effects



Background Methodology Current Results Conclusion

Data

Freyberger, Neuhierl, and Weber (2017)’s dataset:

• CRSP monthly stock returns for most US traded firms

• 36 characteristics from Compustat and CRSP, including size,
momentum, leverage, etc.

• July 1962 - June 2014

Presence and direction of monotonicity is determined by important
papers in the literature

Fisher, Puelz, Carvalho Monotonic Effects
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Estimated functions at January 1978
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How does the function vary over time?

Momentum (r12−2) Standard Unexplained Volume
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How does the function vary over time?

Short-term Reversal (r2−1) Size
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Keep Only the “Significant?” - January 2014
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5 - Utility-based Variable Selection: Puelz, Hahn, and
Carvalho (2017,2018)

1 Specify utility function: model fit + complexity penalty

2 Optimize expected utility:

a Integrate over (R̃t,Θt)

Lλt
(At) =

∥∥Xt−1At − Xt−1Bt

∥∥2
2

+ Φ(λt,At)

b Optimize for a given λt

3 Compare optimal sparse models in light of uncertainty. We
care about the difference in utility between optimal sparse
models and the dense model

Fisher, Puelz, Carvalho Monotonic Effects
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Posterior Summarization - January 2014
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Selected: beme, c, d2a, investment, lme, prof, s2p, sga2m, r12−2, r2−1,
r36−13, idio vol, suv, lev
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Conclusion

• We present a model that fits expected excess returns as
flexible functions of firm characteristics

• These functions can include a priori knowledge of
monotonicity

• These function are dynamic and adapt over time

• We will continue to develop the variable selection process

Fisher, Puelz, Carvalho Monotonic Effects
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Appendix: Model Summary

rt|· ∼ N

(
αt1nt +

K∑
k=1

fkt(xk,t−1), σ
2
t In

)δt
fkt(xk,t−1) = Xk,t−1βkt = Xk,t−1L

−1Lβkt = Wktγkt

αt ∼ N(0, 10−2)

σ2t ∼ U(0, 103)

(γjkt|Ijkt = 1, σ2t ) ∼ N+(0, ckσ
2
t )

(γjkt|Ijkt = 0) = 0

Ijkt ∼ Bn(pjk = 0.2).
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